
Language Models 
COSC 6336: Natural Language Processing

Spring 2018

          Some content on these slides was borrowed from J&M



Language Models
★ They assign a probability to a sequence of words:

○ Machine Translation:
■ P(high winds tonite) > P(large winds tonite)

○ Spell Correction:
■ The office is about fifteen minuets from my house
■ P(about fifteen minutes from) > P(about fifteen minuets from)

○ Speech Recognition
■ P(I saw a van) >> P(eyes awe of an)

○ Summarization, question-answering, OCR correction and many more!



More Formally
★ Given a sequence of words predict the next one:

○ P(w5|w1,w2,w3,w4)
★ Predict the likelihood of a sequence of words:

○ P(W) = P(w1,w2,w3,w4,w5…wn)
★ How do we compute these?



Chain Rule

★ Recall the definition of conditional probabilities:
○ p(B|A) = P(A,B)/P(A)  Rewriting:   P(A,B) = P(A)P(B|A)

★ More variables:
○ P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

★ The Chain Rule in General
○ P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



Back to sequence of words
P(“I am the fire that burns against the cold”) = P(I) x P(am|I) x P(the|I am) x P(fire|I am the) x P(that| I am 
the fire) x P(burns| I am the fire that) x P(against| I am the fire that burns) x P(the| I am the fire that burns 
against) x P(cold| I am the fire that burns against the)

★ How do we estimate these probabilities?

 count(I am the fire that burns against the cold)

 count(I am the fire that burns against the)

★ Any problems with this formulation?

 



We shorten the context (history)
Markov Assumption:

P(cold | I am the fire that burns against the)  ≈ P (cold | burns against the)

This is:

When N = 1, this is a unigram language model:

When k =2, this is a bigram language model:



Count-based language models

★ We can extend to trigrams, 4-grams, 5-grams

★ In general this is an insufficient model of language

★ because language has long-distance dependencies:

○ “The computer which I had just put into the machine room on the fifth 

floor crashed.”

★ But we can often get away with N-gram models



Estimating bigram probabilities
We rely on the Maximum Likelihood Estimate:



An example



Raw bigram counts from the Berkeley restaurant project



Raw bigram counts from the Berkeley restaurant project



What kinds of knowledge?

★ P(english|want)  = .0011

★ P(chinese|want) =  .0065

★ P(to|want) = .66

★ P(eat | to) = .28

★ P(food | to) = 0

★ P(want | spend) = 0

★ P (i | <s>) = .25



Are all our problems solved?



Zeros
Training set:

… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

Test set:

… denied the offer
… denied the loan

If there is a single bigram with prob 
0 we will assign 0 prob to the entire 
test set!



Smoothing Intuition (taken from D. Klein)

•When we have sparse statistics:

•Steal probability mass to generalize 
better

P(w | denied the)
  3 allegations
  2 reports
  1 claims
  1 request
  7 total

P(w | denied the)

  2.5 allegations

  1.5 reports

  0.5 claims

  0.5 request

  2 other

  7 total



Laplace Smoothing
★ Add one to all counts
★ Unigram counts:

★ Laplace counts:

★ Disadvantages:
○ Drastic change in probability 

mass
★ But for some tasks Laplace 

smoothing is a reasonable 
choice



Leveraging Hierarchy of N-grams: Backoff
★ Adding one to all counts is too drastic
★ What about relying on shorter contexts?

○ Let’s say we’re tying to compute P(against | that burns), but count(that burns against) = 0
○ We backoff to a shorter context: P(against | that burns) ≈ P(against | burns)

★ We backoff to a lower n-gram
★ Katz Backoff (discounted backoff)



Leveraging Hierarchy of N-grams: Interpolation
★ Better idea: why not always rely on lower order N-grams?

★ Even better, condition on context:

Subject to:



Absolute Discounting
For each bigram count in training data, what’s 
the count in held out set?

Approx. a 0.75 difference!



Absolute Discounting



How much do we want to trust unigrams?

★ Instead of  P(w): “How likely is w”

★ Pcontinuation(w):  “How likely is w to appear as a novel continuation?

★ For each word, count the number of bigram types it completes



Interpolated Kneser-Ney
★ Intuition: Use estimate of PCONTINUATION(wi)



Evaluating Language Models
★ Ideal: Evaluate on end task (extrinsic)
★ Intrinsic evaluation: use perplexity:

★ Perplexity is inversely proportional to the probability of W



Lower perplexity is better
LMs trained on 38 million words and tested on 1.5 million words from WSJ 



Practical Issues
★ We compute everything in log space:

○ Avoids issues with underflow
○ Faster



Advanced Language Models

★ Discriminative models:
○ choose n-gram weights to improve a task, not to fit the  training 

set
★ Caching Models

○ Recently used words are more likely to appear



Advanced Language Models

★ Deep Learning for Language Models:
○ Neural Language Models have been quite the success lately 

(Bengio et al., 2003; Mikolov et al., 2010) in tasks such as speech 
recognition and machine translation

★ Although, Kneser-Ney has been shown to be competitive and even 
outperformed neural language models over smaller corpora (cf. Chen 
et al., 2016)


