Language Models

COSC 6336: Natural Language Processing
Spring 2018

Some content on these slides was borrowed from J&M

Language Models

% They assign a probability to a sequence of words:
o Machine Translation:
= P(high winds tonite) > P(large winds tonite)
o Spell Correction:
s The office is about fifteen minuets from my house
= P(about fiteen minutes from) > P(about fifteen minuets from)
o Speech Recognition
s P(l saw a van) >> P(eyes awe of an)
o Summarization, question-answering, OCR correction and many more!

HOUSTON

More Formally

% Given a sequence of words predict the next one:
o P(W5|W1,W2,W3,W4)

% Predict the likelihood of a sequence of words:
o P(W)=P(w,w,w,w,w,..W)

* How do we compute these?

HOUSTON

Chain Rule

% Recall the definition of conditional probabilities:
o p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(BJA)
% More variables:
o P(A,B,C,D) = P(A)P(BJA)P(C|A,B)P(D|A,B,C)
% The Chain Rule in General

O P(X;Xp:Xg.- X) = PX)P)P (X5[X, %) . P(X X 0X 4)

HOUSTON

Back to sequence of words

P(“I am the fire that burns against the cold”) = P(l) x P(am|l) x P(the|l am) x P(fire|l am the) x P(that| | am
the fire) x P(burns| | am the fire that) x P(against| | am the fire that burns) x P(the| | am the fire that burns
against) x P(cold| I am the fire that burns against the)

% How do we estimate these probabilities?

count(l am the fire that burns against the cold)

count(l am the fire that burns against the)

% Any problems with this formulation?

HOUSTON

We shorten the context (history)

Markov Assumption:

P(cold | | am the fire that burns against the) = P (cold | burns against the)

Thisis: P(wy|W™") &= P(Wa|Wi"p o)

When N = 1, this is a unigram language model:

Pww,...w)= HP(wi)
When k =2, this is a bigram language model:

n
P(w}) =~ HP(WHH"k—l)
k=1

Count-based language models

* We can extend to trigrams, 4-grams, 5-grams
% In general this is an insufficient model of language
% because language has long-distance dependencies:
o “The computer which | had just put into the machine room on the fifth

floor crashed.”

% But we can often get away with N-gram models

Estimating bigram probabilities

We rely on the Maximum Likelihood Estimate:

count(w,_,w.)

Pw,lw._)=

count(w,_,)

An example

<s>|am Sam </s>
C(Wl 1sW;) <s>Sam lam </s>

Pw,Iw,_)=
<s> | do not like green eggs and ham </s>
C(Wi—l) g g8

Raw bigram counts from the Berkeley restaurant project

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram counts from the Berkeley restaurant project

Normalize by unigrams:

Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 | 0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.0017 | 0.28 0.00083 | O 0.0025 | 0.087
ecat 0 0 0.0027 0 0.021 0.0027 1 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 [0.0063 |0
food 0.014 0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 | 0 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | 0 0 0 0 0

What kinds of knowledge?

P(want | spend) =0

* P(english|jwant) =.0011
% P(chinese|want) = .0065
% P(to]Jwant) = .66

% P(eat|to)=.28

% P(food|to)=0

*x P

*

P (i]| <s>) = .25

Are all our problems solved?

Zeros

Training set: Test set:

... denied the allegations ... denied the offer
... denied the reports ..~ denied the loan
... denied the claims

... denied the request

P(“offer” | denied the) = 0

If there is a single bigram with prob
0 we will assign 0 prob to the entire
test set!

Smoothing Intuition (taken from D.

*When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

*Steal probability hivi#ss to generalize
better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Klein)

)
« €
O o
g £ O
£ O 5
© & O
c
o “E’
- o) x
= = S o
(V] (@] 7] © -—
=|| al|l € .."::g:s
(0] 8‘,—?’ (0} (@)
(U] [

reques

Laplace Smoothing

% Add one to all counts % Disadvantages:
% Unigram counts: o Drastic change in probability
Ci mass
P(wi) = N % But for some tasks Laplace
% Laplace counts: smoothing is a reasonable
choice

ci+1
PLaplace(Wi) = 1\;—|—V

Leveraging Hierarchy of N-grams: Backoff

% Adding one to all counts is too drastic

% What about relying on shorter contexts?
o Let’s say we're tying to compute P(against | that burns), but count(that burns against) = 0
o We backoff to a shorter context: P(against | that burns) = P(against | burns)

We backoff to a lower n-gram
Katz Backoff (discounted backoff)

*

P* (wy|w'Z} iFCWe 5.4 >0

o g n—N-+1/7
PRO(WalW)“N11) = a(w!

n:}\f+1)PBO(Wﬂ|WE:}V+2)a otherwise.

Leveraging Hierarchy of N-grams: Interpolation

% Better idea: why not always rely on lower order N-grams?

p(Wn|an2Wn—l) — 24113(‘/‘)!1|M)l?*21'vn*1)
—|—/’1~2P(Wn|wn—l)
-|—13P(Wn)

% Even better, condition on context:

Subject to: Zlg =1
i

p(Wn|Wn—2Wn—l) =)vl(= I)P(Wn|Wn 2Whn— l)
+A2 (W), Wn 2)P(Wn|wn 1)
+ A3 (w), W 2)P(Wn)

Absolute Discounting

Bigram count
in training

Bigram count in
held out set

.0000270

0.448

1,25

2.24

3.23

4.21

5.23

6.21

7.21

LI (INO | |WIN|IF|O

8.26

For each bigram count in training data, what'’s
the count in held out set?

Approx. a 0.75 difference!

Absolute Discounting

C Wi_1W; —d
PAbso]uteDiseounting(W.f'Wi—l): Z(: CEW')l‘V) “I'A(Wr: I)P(W.{)

How much do we want to trust unigrams?

* Instead of P(w): “How likely is w”

* continuation(
% For each word, count the number of bigram types it completes

w): “How likely is w to appear as a novel continuation?

. H{v:C(wvw) > 0}]
CONTINUATION (W) = {(,w) : Cluw') > 0}]

Interpolated Kneser-Ney

% Intuition: Use estimate of P W)

CONTINUATION([

— - d.0 o
(KN(+1))—|-A(w- :)PKN(WE|W1 n+2)

PKN(W-‘5|W£ !H—l) Z CKN(i—1) I—n—+1
V I— n—{—l

Evaluating Language Models

% |deal: Evaluate on end task (extrinsic)
% Intrinsic evaluation: use perplexity:

i—1

N - !
PP(W) = HP(W;‘|W1 e Wi—1)

% Perplexity is inversely proportional to the probability of W

Lower perplexity is better

LMs trained on 38 million words and tested on 1.5 million words from WSJ

N-gram Bigram Trigram
Order

Perplexity

Practical Issues

% We compute everything in log space:
o Avoids issues with underflow
o Faster

Advanced Language Models

Y Discriminative models:

O choose n-gram weights to improve a task, not to fit the training
set

% Caching Models

O Recently used words are more likely to appear

Advanced Language Models

% Deep Learning for Language Models:

o Neural Language Models have been quite the success lately
(Bengio et al., 2003; Mikolov et al., 2010) in tasks such as speech
recognition and machine translation

% Although, Kneser-Ney has been shown to be competitive and even
outperformed neural language models over smaller corpora (cf. Chen
et al., 2016)

HOUSTON

