
Text Classification
COSC 6336: Natural Language Processing

Spring 2018

          Some content on these slides was adapted from J&M and from Wei Xu



Class Announcements
★ Midterm exam now on March 21st. 
★ Removing Paper presentations from syllabus
★ Practical 1 is posted:

○ System submission is March 7th
○ Report is due March 9th



Today’s lecture
★ Text Classification 

○ Example applications
○ Task definition

★ Classical approaches to Text Classification
○ Naive Bayes
○ MaxEnt





What do these books have in common?



Other tasks that can be solved as TC
★ Sentiment classification

★ Native language identification

★ Author Profiling

★ Depression detection

★ Cyberbullying detection

★ ….



Formal definition of the TC task

★ Input:
○ a document d
○ a fixed set of classes  C = {c1, c2,…, cJ}

★ Output: a predicted class c ∈ C



Methods for TC tasks
★ Rule based approaches
★ Machine Learning algorithms

○ Naive Bayes
○ Support Vector Machines
○ Logistic Regression
○ And now deep learning approaches



Naive Bayes for Text Classification
★ Simple approach 
★ Based on the bag-of-words representation



Bag of words
The first reference to Bag 
of Words is attributed to a 
1954 paper by Zellig Harris



Naive Bayes
Probabilistic classifier                                        (eq. 1)

According to Bayes rule:                                        (eq. 2)

Replacing eq. 2 into eq. 1:

Dropping the denominator:  

    



Naive Bayes
A document d is represented as a set of features f

1 
, f

2 
, …, f

n   

How many parameters do we need to learn in this model?



Naive Bayes Assumptions
1. Position doesn’t matter
2. Naive Bayes assumption: probabilities P(f

i
|c) are independent given the class 

c and thus we can multiply them:

This leads us to:



Naive Bayes in Practice
We consider word positions:

We also do everything in log space:



Naive Bayes: Training
How do we compute        and            ?



Is Naive Bayes a good option for TC?



Evaluation in TC
Confusion table

                                    Accuracy =      TP + TN 

                                                   (TP + TN + FN + FP)

Gold Standard

True False

True TP = true positives FP = False positives

False FN = false negatives TN = True negatives



Evaluation in TC: Issues with Accuracy?
Suppose we want to learn to classify each message in a web forum as “extremely 
negative”. We have a collected gold standard data:

★ 990 instances are labeled as negative
★ 10 instances are labeled as positive
★ Test data has 100 instances (99- and 1+)
★ A dumb classifier can get 99% accuracy by always predicting “negative” !



More Sensible Metrics: Precision, Recall and F-measure

P= TP/(TP+FP)

R=TP/(TP+FN)

F-measure =  

Gold Standard

True False

True TP = true positives FP = False positives

False FN = false negatives TN = True negatives



What about Multi-class problems?
● Multi-class: c > 2

● P, R, and F-measure are defined for a single class

● We assume classes are mutually exclusive

● We use per class evaluation metrics

P = R = 



Micro vs Macro Average
★ Macro average: measure performance per class and then average
★ Micro average: collect predictions for all classes then compute TP, FP, FN, 

and TN 
★ Weighted average: compute performance per label and then average where 

each label score is weighted by its support



Example



Train/Test Data Separation



Does this model look familiar?



Logistic Regression
(MaxEnt)



Disadvantages of NB
★ Correlated features

○ Their evidence is overestimated

★ This will hurt classifier performance



Logistic Regression
★ No independence assumption
★ Feature weights are learned simultaneously



Logistic Regression
Computes p(y|x) directly from training data:



Logistic Regression
Computes p(y|x) directly from training data:

But since the result of this will not be a proper probability function we need to 
normalize this:



Logistic Regression
★ We then compute the probability (y|x) for every class
★ We choose the class with the highest probability



Features in Text Classification
★ We can have indicator functions of the form:



Features in Text Classification
★ Or other functions:



An Example



Learning in Logistic Regression



Learning in Logistic Regression
How does training look like?

We need to find the right weights

How?

By using the Conditional Maximum Likelihood Principle:

Choose parameters that maximize the log probability of the y labels in the training 
data:

 



Learning in Logistic Regression
So the objective function L(w) we are maximizing is this:

 



Learning in Logistic Regression
★ We use optimization methods like Stochastic Gradient Ascent to find the 

weights that maximize L(w)
★ We start with weights = 0 and move in the direction of the gradient (the partial 

derivative L’(w))



Learning in Logistic Regression
★ The derivative turns out to be easy:



Regularization
★ Overfitting: when a model “memorizes” the training data 
★ To prevent overfitting we penalize large weights:

★ Regularization forms:
○ L2 norm (Euclidean)

○ L1 norm (Manhattan)



In Summary
★ NB is a generative model

○ Highly correlated features can result in bad results

★ Logistic Regression
○ Weights for feature are calculated simultaneously

★ NB seems to fare better in small data sets
★ Both NB and Logistic regression are linear classifiers
★ Regularization helps alleviate overfitting


