Hidden Markov Models

COSC 6336 Intro to Natural Language Processing Spring 2018

With adapted material from Yang Liu, who borrowed material from Tanja Schultz and Dan Jurafsky

In This Lecture

- Introduction to Hidden Markov Models (HMMs)
 - Forward algorithm
 - Viterbi algorithm

More Formally: Toward HMMs

Markov Models

- A Weighted Finite-State Automaton (WFSA)
 - An FSA with probabilities on the arcs
 - The sum of the probabilities leaving any arc must sum to one
- A Markov chain (or observable Markov Model)
 - a special case of a WFSA in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
 - Useful for assigning probabilities to unambiguous sequences

Markov Chain for Weather

First-order Observable Markov Model

- A set of states
 - $Q = q_1, q_2...q_{N}$; the state at time t is q_t
- Current state only depends on previous state $P(q_i | q_1 ... q_{i-1}) = P(q_i | q_{i-1})$
- Transition probability matrix A

$$a_{ij} = P(q_t = j | q_{t-1} = i) \quad 1 \le i, j \le N$$

Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Constraints:

$$\sum_{j=1}^{N} a_{ij} = 1; \quad 1 \le i \le N \qquad \sum_{j=1}^{N} \pi_j = 1$$

Markov Model for Dow Jones

Initial state probability matrix

$$\boldsymbol{\pi} = (\boldsymbol{\pi}_i) = \begin{pmatrix} 0.5\\ 0.2\\ 0.3 \end{pmatrix}$$

State-transition probability matrix

$$\mathbf{A} = \{a_{ij}\} = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

Markov Model for Dow Jones

- What is the probability of 5 consecutive up days?
- Sequence is up-up-up-up-up
- I.e., state sequence is 1-1-1-1

•
$$P(1,1,1,1,1) = ?$$

Markov Model for Dow Jones

P(1,1,1,1,1) =

• $\pi_1 a_{11} a_{11} a_{11} a_{11} = 0.5 \times (0.6)^4 = 0.0648$

Initial state probability matrix

$$\boldsymbol{\pi} = (\boldsymbol{\pi}_i) = \begin{pmatrix} 0.5 \\ 0.2 \\ 0.3 \end{pmatrix}$$

State-transition probability matrix

$$\mathbf{A} = \{a_{ij}\} = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states
 - See up one day: we' re in state up
- But in many NLP tasks:
 - output symbols are words
 - hidden states are something else
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

 $Q = q_1 q_2 \dots q_N$ $A = a_{11}a_{12}\ldots a_{n1}\ldots a_{nn}$ $O = o_1 o_2 \dots o_T$ $B = b_i(o_t)$ q_0, q_F

a set of N states

- a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$
- a sequence of *T* **observations**, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$
- a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state *i*
- a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state

Assumptions

Markov assumption:

$$P(q_i | q_1 ... q_{i-1}) = P(q_i | q_{i-1})$$

Output-independence assumption

$$P(o_t | O_1^{t-1}, q_1^t) = P(o_t | q_t)$$

HMM for Dow Jones

HMMs for Weather and Ice-cream

 Jason Eisner's cute HMM in Excel, showing Viterbi and EM:

http://www.cs.jhu.edu/~jason/papers/#teaching Idea:

- You are climatologists in 3004
- Want to know about Baltimore weather in 2004
- Only data you have is Jason Eisner's diary
- Which records how much ice cream he ate each day
- Observation:
 - Number of ice creams
- Hidden State: Simplify to only 2 states
 - Weather is Hot or Cold that day.

The Three Basic Problems for HMMs

- (From the classic formulation by Larry Rabiner after Jack Ferguson)
- L. R. Rabiner. 1989. A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc IEEE 77(2), 257-286. Also in Waibel and Lee volume.

The Three Basic Problems for HMMs

- Problem 1 (Evaluation/Likelihood): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we efficiently compute P(O| Φ), the probability of the observation sequence, given Φ
- Problem 2 (Decoding): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we choose a corresponding state sequence Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)
- Problem 3 (Learning): How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O | \Phi)$?

Problem 1: Computing the Observation Likelihood

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$.

How likely is the sequence 3 1 3?

How to Compute Likelihood

- For a Markov chain, we just follow the states 3 1
 3 and multiply the probabilities
- But for an HMM, we don't know what the states are!
- So let's start with a simpler situation
- Computing the observation likelihood for a given hidden state sequence
 - Suppose we knew the weather and wanted to predict how much ice cream Jason would eat
 - i.e. P(313|HHC)

Computing Likelihood of 3 1 3 Given Hidden State Sequence

$$P(O|Q) = \prod_{i=1}^{T} P(o_i|q_i)$$

 $P(3 \ 1 \ 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$

Computing Joint Probability of Observation and a Particular State Sequence

$$P(O,Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1})$$

 $P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$

Computing Total Likelihood of 3 1 3

- We would need to sum over
 - Hot hot cold
 - $P(O) = \sum_{O} P(O,Q) = \sum_{O} P(O|Q)P(Q)$ Hot hot hot
 - Hot cold hot
 -

How many possible hidden state sequences are there for this sequence?

 $P(3 1 3) = P(3 1 3, \text{cold cold cold}) + P(3 1 3, \text{cold cold hot}) + P(3 1 3, \text{hot hot cold}) + \dots$

How about in general for an HMM with N hidden states and a sequence of T observations?

N^T

Computing Observation Likelihood $P(O|\Phi)$

- Why can't we do an explicit sum over all paths?
- Because it's intractable, there are $O(N^{T})$ paths
- What we do instead:
- The Forward Algorithm. O(N²T)
- A kind of **dynamic programming** algorithm
 - Uses a table to store intermediate values
- Idea:
 - Compute the likelihood of the observation sequence by summing over all possible hidden state sequences

The Forward Algorithm

The goal of the forward algorithm is to compute

$$P(o_1, o_2, ..., o_T, q_T = q_F | \lambda)$$

We'll do this by recursion

The Forward Algorithm

- Each cell of the forward algorithm trellis α_t(j)
 - Represents the probability of being in state j
 - After seeing the first t observations
 - Given the automaton
- Each cell thus expresses the following probability

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$$

The Forward Trellis

We update each cell

 $\alpha_{t-1}(i)$ the **previous forward path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

The Forward Algorithm

- The Idea: Fold these exponential paths into a simple trellis, so that all possible paths will remerge into N states at every time slice.
- We define the *forward probability* as follows: $\alpha_t(i) = P(o_0 o_1 \cdots o_t, q_t = i | \Phi)$
- this is the probability that the HMM Φ is in state *i* at time *t* having generated partial observation O^t₁.
- We compute it by induction:
 - Initialization: $\alpha_1(i) = \pi_i P(o_1|q_i), 1 \le i \le N$
 - (equivalently: $\alpha_1(i) = \pi_i b_i(o_1), 1 \le i \le N$
 - Induction:

$$\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right]b_j(o_t),$$

$$2 \le t \le T, 1 \le j \le N$$
(3)

– Termination: $P(O|\Phi) = \sum_{i=1}^{N} \alpha_T(i)$

26

The Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T] for each state s from 1 to N do ; initialization step forward[s,1] $\leftarrow a_{0,s} * b_s(o_1)$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do forward[s,t] $\leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_s(o_t)$ forward[q_F,T] $\leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F}$; termination step return forward[q_F,T]

Forward Trellis for Dow Jones

The Three Basic Problems for HMMs

- Problem 1 (Evaluation): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we efficiently compute P(O| Φ), the probability of the observation sequence, given the model
- Problem 2 (Decoding): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we choose a corresponding state sequence Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)
- Problem 3 (Learning): How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O | \Phi)$?

Decoding

- Given an observation sequence
 - up up down
- And an HMM
- The task of the decoder
 - To find the best hidden state sequence
- We can calculate P(O|path) for each path
- Could find the best one
- But we can't do this, since again the number of paths is O(N^T). Instead:
 - Viterbi Decoding: dynamic programming, slight modification of the forward algorithm

Viterbi intuition

 We want to compute the joint probability of the observation sequence together with the best state sequence

$$v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

Viterbi Recursion

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$bt_t(j) = \arg_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

The best score:
$$P = v_t(q_F) = \max_{i=1}^N v_T(i) * a_{i,F}$$

The start of backtrace: $q_T * = bt_T(q_F) = \arg_{i=1}^N v_T(i) * a_{i,F}$

The Viterbi trellis

Viterbi for Dow Jones

Viterbi Intuition

- Process observation sequence left to right
- Filling out the trellis
- Each cell:

$$v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$
$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

The Viterbi Algorithm

So Far...

- Forward algorithm for evaluation
- Viterbi algorithm for decoding
- Next topic: the learning problem