Hidden Markov Models

COSC 6336 Intro to Natural Language Processing
Spring 2018

With adapted material from Yang Liu, who borrowed material
from Tanja Schultz and Dan Jurafsky



In This Lecture

= |ntroduction to Hidden Markov Models (HMMs)

= Forward algorithm
= Viterbi algorithm




More Formally: Toward HMMs

Markov Models

= A Weighted Finite-State Automaton (WFSA)
= An FSA with probabilities on the arcs

* The sum of the probabilities leaving any arc must sum to one

= A Markov chain (or observable Markov Model)

= a special case of a WFSA in which the input sequence uniquely
determines which states the automaton will go through

= Markov chains can’ t represent inherently ambiguous
problems

= Useful for assigning probabilities to unambiguous sequences




Markov Chain for Weather




First-order Observable Markov

Model

= A set of states
= Q=q4, qp...qn. the state attime tis q;

Current state only depends on previous state
P(g;1q,..q..)=P(q;1q,.)
= Transition probability matrix A
a,=P(q,=jlq_ =10 l=<ij<N
Special initial probability vector w
w,=P(q=1) l<sisN

= Constraints:
N

N
a..=1; ISiSN Enj=1
j=1

ij
j=1




Markov Model for Dow Jones

Initial state probability matrix

(0.5)
n=(r,)=|0.2
0.3)

\

State-transition probability matrix
0.6 02 02
A={q,}=05 03 02
04 0.1 0.5




Markov Model for Dow Jones

= What is the probability of 5 consecutive up
days?

= Sequence is up-up-up-up-up

= |.e., state sequence is 1-1-1-1-1

- P1,1,1,1,1)="7




Markov Model for Dow Jones

= P(1,1,1,1,1) =
" mMaqqaq1dq1aAqq1 = 0.5 x (06)4 = (0.0648

0.6 0.3

Initial state probability matrix

0.5
n=(r,)=|0.2
0.3

State-transition probability matrix
0.6 02 0.2

A={a,}= er.S 0.3 0.2“
04 0.1 0.5




Hidden Markov Model

For Markov chains, the output symbols are the same as
the states

= See up one day: we’ re in state up
But in many NLP tasks:

= output symbols are words
» hidden states are something else

So we need an extension!

A Hidden Markov Model is an extension of a Markov
chain in which the input symbols are not the same as the
states.

This means we don’ t know which state we are in.




Hidden Markov Models

O=q1q2...9gN a set of N states

A=ayay...ay ...ay, atransition probability matrix A, each a;; rep-
resenting the probability of moving from state 7
to state j,s.t. i _ja;; =1 Vi

O0=0102...0T a sequence of 7" observations, each one drawn
from a vocabulary V = vy, vs,...,vy

B = Dj(0y) a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state 7

q0.9F a special start state and end (final) state that are
not associated with observations, together with
transition probabilities agiaga . ..ap, out of the
start state and ajra>F . .. a,fF into the end state
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= Markov assumption:
P(g;1q,..q..)=P(q;1q,.)
= Qutput-independence assumption

P(o, 10/~ ,q) = P(o, lg,)
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HMM for Dow Jones

0.6 0.3

05
initial state prob. = {02
6.3

P(up)

output
pdf = Bdown)
Plunchanged)

0.5

From Huang et al.
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HMMs for Weather and Ice-cream

= Jason Eisner’ s cute HMM in Excel, showing Viterbi and
EM:

http://www.cs.jhu.edu/~jason/papers/#teaching

|dea:

* You are climatologists in 3004

= Want to know about Baltimore weather in 2004

= Only data you have is Jason Eisner’ s diary

= Which records how much ice cream he ate each day

= (QObservation:
= Number of ice creams

= Hidden State: Simplify to only 2 states
= Weather is Hot or Cold that day.
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The Three Basic Problems for
HMMs

= (From the classic formulation by Larry Rabiner
after Jack Ferguson)

= L. R. Rabiner. 1989. A tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proc IEEE 77(2), 257-286. Also in
Waibel and Lee volume.
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The Three Basic Problems for HMMs

Problem 1 (Evaluation/Likelihood): Given the
observation sequence O=(0,0,...07), and an HMM model
® = (A,B), how do we efficiently compute P(O| @), the
probability of the observation sequence, given @
Problem 2 (Decoding): Given the observation sequence
0=(0,0,...07), and an HMM model ® = (A,B), how do we
choose a corresponding state sequence Q=(q¢Q,...97)
that is optimal in some sense (i.e., best explains the
observations)

Problem 3 (Learning): How do we adjust the model
parameters ® = (A,B) to maximize P(O| ® )?
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Problem 1: Computing the

Observation Likelihood

Computing Likelihood: Given an HMM A = (A, B) and an observation
sequence O, determine the likelihood P(O|A).

= Given the following HMM:

B, B,

P(1 | HOT) 2 P(1|COLD) 5
P@2|HOT)| = |4 P2|coLD)| = | .4
P(3 | HOT) 4 P(3 | COLD) A

= How likely is the sequence 3 1 3?



How to Compute Likelihood

For a Markov chain, we just follow the states 3 1
3 and multiply the probabilities

But for an HMM, we don’ t know what the states
are!

So let’ s start with a simpler situation

Computing the observation likelihood for a given
hidden state sequence

= Suppose we knew the weather and wanted to predict
how much ice cream Jason would eat

" .e. P(313|HHC)




Computing Likelihood of 3 1 3
Given Hidden State Sequence

P(3 1 3|hot hot cold) = P(3|hot) x P(1|hot) x P(3|cold)

1T



Computing Joint Probability of Observation

and a Particular State Sequence

P(0,Q) = P(0|Q) x P(Q HP 0ilg;) XHP 9ilgi-1

P(313,hothot cold) = P(hot|start) x P(hot|hot) x P(cold|hot)
X P(3|hot) x P(1|hot) x P(3|cold)




Computing Total Likelihood of 3 1 3

= We would need to sum over
= Hot hot cold
= Hot hot hot P(0)= ) P(0,Q)= ) P(0[Q)P(Q)
= Hot cold hot 0 0

= How many possible hidden state sequences are there
for this sequence?

P(313)=P(31 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+...

= How about in general for an HMM with N hidden states
and a sequence of T observations?

m NT




Computing Observation Likelihood

Why can’ t we do an explicit sum over all paths?

Because it’ s intractable, there are O(NT) paths
What we do instead:
The Forward Algorithm. O(N24T)

A kind of dynamic programming algorithm
= Uses a table to store intermediate values

|dea:

= Compute the likelihood of the observation sequence by summing

over all possible hidden state sequences
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The Forward Algorithm

= The goal of the forward algorithm is to compute

P(0,,0,,...,.0,,, =q, | L)

= We' Il do this by recursion




The Forward Algorithm

= Each cell of the forward algorithm trellis ou())
» Represents the probability of being in state j
= After seeing the first t observations
»= Given the automaton

= Each cell thus expresses the following
probability

o (j) = P(01,07...01,q; = jIA)




The Forward Trellis
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We update each cell

the previous forward path probability from the previous time step
the transition probability from previous state ¢; to current state ¢;

the state observation likelihood of the observation symbol o; given
the current state j
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The Forward Algorithm

e The ldea: Fold these exponential paths into a simple trellis, so that all possible
paths will remerge into N states at every time slice.

e We define the forward probability as follows: o (i) = P(ogo; - - - 0;,q; = i|®P)

e this is the probability that the HMM & is in state i at time ¢ having generated
partial observation O7.

e We compute it by induction:
- Initialization: o (i) = m;P(o1]qi),1 <i<N
— (equivalently: o (i) =m;bi(01),l <i <N
- Induction:
N
o (j) = [zzi o1 (i)aijlbj(or),
2<t<T,1<j<N (3)

— Termination: P(0|®) = Y | oz (i) 26



The Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; Initialization step
Jorward[s,1]1—aq s * Ds(07)
for each time step 7 from 2 to 7' do ; recursion step
for each state s from 1 to N d?v

forward([s,t] — Z forward[s';t — 1] % ag 5 * bs(or)

¥=1
N
forward[qr  T] — Z Jorward[s,T| * as g, . termination step
s=1

return forward[qr,T _]




Forward Trellis for Dow Jones

X, = up X,=up
=1

=0

P(up) 0.7
P(down) = (0.1
P(unch.) 0.2 state ]
0.1
0.6 ° state 2
0.3
0.3
03 state 3
04

The forward trellis computation for the
06 02 02 Dow Jones Industrial average

A={g,}=|05 03 0.2
04 0.1 05

PU=D*a,*b,(X) | _,

0.35%0.6%0.7 0.179*%0.6*0.7
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The Three Basic Problems for HMMs

Problem 1 (Evaluation): Given the observation sequence
0=(040,...07), and an HMM model ® = (A,B), how do we
efficiently compute P(O| @), the probability of the
observation sequence, given the model

Problem 2 (Decoding): Given the observation sequence
0=(040,...07), and an HMM model ® = (A,B), how do we
choose a corresponding state sequence Q=(q¢Q,...97)
that is optimal in some sense (i.e., best explains the
observations)

Problem 3 (Learning): How do we adjust the model
parameters ® = (A,B) to maximize P(O| ® )?
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Decoding

= Given an observation sequence
" up up down

= And an HMM

= The task of the decoder

= To find the best hidden state sequence
= We can calculate P(O|path) for each path
= Could find the best one

= But we can’ t do this, since again the number of paths is
O(NT). Instead:

= Viterbi Decoding: dynamic programming, slight modification of
the forward algorithm

30



Viterbi intuition

= We want to compute the joint probability of the
observation sequence together with the best
state sequence

vw(j)= max P(qo0,q1.--4t-1,01,02...0t,qr = j|A)
q0.91+----9r—1

N

vi(j) = I}lzafcw—l(i) ai;j bj(o;)




Viterbl Recursion

1. Initialization:

vi(j) = aojbj(o1) 1<j<N
b (j) = 0

2. Recursion (recall that states O and g are non-emitting):

N

w(j) = I}Lafcv,_l(i)aijbj(o,); 1<j<N,1<t<T
bi,(j) = argﬁ}axv,_l(i)a,-jbj(o,); 1<j<N,1<t<T
—
3. Termination:
The best score: P« =v;(qr) = Ii\f/nlx vr (i)« a; F
N

The start of backtrace: ¢qr* =bir(qr) = argmax vr(i)*a;F
i=1



The Viterbi trellis
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Viterbi for Dow Jones

P(up) 0.7
P(down) = |0.1
PQunch.) 0.2
0.1

0.6

0.3

0.3

0.3

04

0.6 0.2 0.2
A={ay}= 0.5 03 02
04 0.1 0.5

state 1

state 2

state 3

X, =up

r=1

P *a, *b,(X)

X, =up
=2
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Viterbi Intuition

= Process observation sequence left to right
= Filling out the trellis

= Each cell:
v(j)= max P(q0,91.--9t—1,01,02...0¢,qr = j|A)
q0:91+---:9r—1
. N .
ve(j) = maxv,_1(i) a;; bj(or)
i=1

vi_1(7) the previous Viterbi path probability from the previous time step

aij the transition probability from previous state ¢; to current state ¢

bj(or) the state observation likelihood of the observation symbol o; given

the current state j
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The Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; Initialization step
viterbi[s,1]<—ag s * Ds(01)
backpointer(s,1]—0

for each time step 7 from 2 to 7' do ; recursion step

for each state s frtl)vm 1to Ndo
viterbi[s,t] — max viterbi [s’,r —1] * ag s * bs(or)
s'=1 :

: N o
backpointer[s.t] — argmax viterbi[s',t —1] * ag

s'=1
- N s . -
viterbi[gr .T] < max viterbi[s,T] * as g, ; terminaftion step
s=1
, N . . .
backpointer[qr T]— argmax viterbi(s,T| * as gz . termination step

s=1

return the backtrace path by following backpointers to states back in
time from Dackpointer(qr,T]
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= Forward algorithm for evaluation
= Viterbi algorithm for decoding
= Next topic: the learning problem
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