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The Three Basic Problems for HMMs

Problem 1 (Evaluation): Given the observation sequence
0=(040,...07), and an HMM model ® = (A,B), how do we
efficiently compute P(O| @), the probability of the
observation sequence, given the model

Problem 2 (Decoding): Given the observation sequence
0=(040,...07), and an HMM model ® = (A,B), how do we
choose a corresponding state sequence Q=(q49,...97)
that is optimal in some sense (i.e., best explains the
observations)

Problem 3 (Learning): How do we adjust the model
parameters ® = (A,B) to maximize P(O| ® )?




The Learning Problem

Learning: Given an observation sequence O and the set of possible states
in the HMM, learn the HMM parameters A and 5.

= Baum-Welch = Forward-Backward Algorithm (Baum
1972)

= |s a special case of the EM or Expectation-Maximization
algorithm (Dempster, Laird, Rubin)

= The algorithm will let us train the transition probabilities A=
{a;} and the emission probabilities B={b;(o,)} of the HMM




Starting out with Observable Markov

Models

= How to train?
= Run the model on the observation sequence O.

= Since it’ s not hidden, we know which states we went
through, hence which transitions and observations were
used.

= Given that information, training:

= B ={b,(0y)}: Since every state can only generate one observation
symbol, observation likelihoods B are all 1.0

= A={a}
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Extending Intuition to HMMs

* For HMMs, cannot compute these counts
directly from observed sequences

= Baum-Welch (forward-backward) intuitions:

= |teratively estimate the counts
« Start with an estimate for a; and b,, iteratively improve the
estimates
» Get estimated probabilities by:
« computing the forward probability for an observation
« dividing that probability mass among all the different paths
that contributed to this forward probability
= Two related probabilities: the forward probability and
the backward probability




Recall: The Forward Algorithm

e The ldea: Fold these exponential paths into a simple trellis, so that all possible
paths will remerge into N states at every time slice.

e We define the forward probability as follows: o, (i) = P(ogo; - - - 0;,q; = i|P)

this is the probability that the HMM & is in state 7 at time ¢ having generated
partial observation 0.

We compute it by induction:

— Initialization: a1 (i) = mjP(o1|qi),1 <i< N
— (equivalently: oy (i) =m;bi(01),l <i <N
- Induction:

N
o (j) = [; o1 (i)aij|bj(or),

2<t<T.1<j<N (3)

— Termination: P(O|®) = YV, ar (i)



The inductive step, from Rabiner and

= Computation of a,(j) by summing all previous values o, _4(i) for all /




The Backward algorithm

= We compute backward prob by induction:

1. Initialization:
Br(i) = air, 1 <i<N

2. Recursion (again since states O and gz are non-emitting):

Zalj J Ot—i—l)ﬁt—i—l(j): l<i<N,1<1<T
3. Termination:

N
P(O|%) = ar(qr) = B1(0) = > _ao; bj(o1) B1(})
j=1




Inductive Step of the Backward Algorithm

(Figure after Rabiner and Juang)

=  Computation of (i) by weighted sum of all successive values B,




Extending Intuition to HMMs

* For HMMs, cannot compute these counts
directly from observed sequences

= Baum-Welch (forward-backward) intuitions:

= |teratively estimate the counts
« Start with an estimate for a; and b,, iteratively improve the
estimates
» Get estimated probabilities by:
« computing the forward probability for an observation
« dividing that probability mass among all the different paths
that contributed to this forward probability
= Two related probabilities: the forward probability and
the backward probability
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Intuition for Re-estimation of 3;

We will estimate /5  via this intuition:
I

. expected number of transitions from state i to state j

a;

expected number of transitions from state i

Numerator intuition:

= Assume we had some estimate of probability that a given
transition /-j was taken at time ¢ in observation sequence.

» |f we knew this probability for each time t, we could sum over all
t to get expected value (count) for i-/.
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Re-estimation of a;

= Lety, be the probability of being in state i at time
t and state j at time t+7, given O, + and model ®:

7/;(19]) — P(qt — iaqt_ﬂ — .] | 09(1))

= We can compute y from not-quite-y, which is:

nOt_thite_yt(iaj) :P(qt :iaqt+1 :]90|(D)
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Computing not-quite-y

The four components of P(q, =i,q,,, = j,O0|®):a, f,a, and b (o,)
not-quite-/; (7, j) = 0 (1) a0 j(0r41)Br+1(J)

\
\\
b, (t) \ B, (t+1)
01 O | N {0 141 042
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From not-quite-y to vy

not-quite-y; (i, j) = oy (i) a; b j(0r41)Br+1(7)
YI(la.]) :P(ql — iaql+l — ]|07(I))

not-quite-yt(i, J) — P(qf =1,q1+1 = J?O‘(I))
P(X,0|®)
P(O[®)

P(X|0,®) =

N
P(O|®) = ar(N) =Pr(1) = Zlott(j)ﬁz(j)
j=

0 (1) aijbj(0r+1)Brs1(J)
o7 (N)

YI(ivj):

(8)



From vy to a;

4., — expected number of transitions from state / to state
e expected number of transitions from state /

e [he expected number of transitions from state i to state j
is the sum over all 7 of 7.

e The total expected number of transitions out of state i is
the sum over all transitions out of state i.

e Final formula for reestimated q;;:

A t 1 yt(l ])
21:1 jzlYt(l,J)

(14)
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Re-estimating the Observation

Likelihood b

e This is the probability of a given symbol v; from the
observation vocabulary V, given a state j: b;(vy).
~ expected number of times in state jand observing symbol v,
b,(v,)= ; ; ;
expected number of times in state j

e For this we will need to know the probability of being in
state j at time ¢, which we will call &;(j) (§ for state):

e &(j) =Plg: = j|lO,D)

e We compute this by including the observation sequence
in the probability and then normalizing:

¢ ﬁt( ) = q’mj‘g)'(b) 16



Computing &

Computation of (t), the probability of being in state j
at time {.

. P(g;=j.0|®
o * &0 ="Fda)

o &)= "Hoaf

o® Bt

0,
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Reestimating the observation

Likelihood b

; (v,) = expected number of times in state jand observing symbol v,
J\VE)

expected number of times in state j

= For numerator, sum (t) for all tin which o, is
symbol v,.

A B ZIT:IS.I.O,:vk E—v] (t)
b1 ve) = > &)
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Summary of Aand B

The ratio between the
expected number of
transitions from state 1 to j
and the expected number of
all transitions from state i

The ratio between the
expected number of times
the observation data emitted
from state j 1s v,, and the
expected number of times
any observation is emitted
from state j
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The Forward-Backward Algorithm

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state
set Q) returns HMM=(A,B)
initialize A and B
iterate until convergence
E-step
N — o (7)Br(J) Yt and i
7 (J) ar(qr) " 1andi
Na::b s ;
b&t(lq‘]) _ at(l)alj d];?tq_;l))ﬁ[+l (J) % z, I, and ]
M-step
T—1 T
S (i) 2 )
A — B ﬂ _ r=1s.1. O;=v;
Gij = 5y i) !
Z & (i) ; vt (J)
t—1 k=1 B
return A, B
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Summary: Forward-Backward

Algorithm

1) Initialize ®=(A,B,n)

2) Compute o, B, &

3) Estimate new @' =(A,B,x)
4) Replace ® with @’

5) If not converged go to 2
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Embedded Training of HMMs

= The entire procedure:

1. Choose an estimate for a and b

2. Re-estimate aand b

3. Repeat until convergence

= How do we get initial estimates for a and b?

= For a we assume that from any state all the
possible following states are equiprobable

= For b we can use a small hand-labelled training
corpus
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= We learned the Baum-Welch algorithm for

earning the A and B matrices of an individual
AMM

= |t doesn’ t require training data to be labeled at
the state level; all you have to know is that an
HMM covers a given sequence of observations,
and you can learn the optimal A and B
parameters for this data by an iterative process.
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The Learning Problem: Caveats

= Network structure of HMM is always created by
hand

* no algorithm for double-induction of optimal structure
and probabilities has been able to beat simple hand-
built structures.

= Baum-Welch only guaranteed to find a local

max, rather than global optimum
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