
Hidden Markov Models

COSC 6336 Natural Language Processing
Spring 2018

With adapted material from Yang Liu, who borrowed material 
from Tanja Schultz and Dan Jurafsky



2

The Three Basic Problems for HMMs

§ Problem 1 (Evaluation): Given the observation sequence 
O=(o1o2…oT), and an HMM model F = (A,B), how do we 
efficiently compute P(O| F), the probability of the 
observation sequence, given the model

§ Problem 2 (Decoding): Given the observation sequence 
O=(o1o2…oT), and an HMM model F = (A,B), how do we 
choose a corresponding state sequence Q=(q1q2…qT)
that is optimal in some sense (i.e., best explains the 
observations)

§ Problem 3 (Learning): How do we adjust the model 
parameters F = (A,B) to maximize P(O| F )?
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The Learning Problem

§ Baum-Welch = Forward-Backward Algorithm (Baum 
1972)

§ Is a special case of the EM or Expectation-Maximization 
algorithm (Dempster, Laird, Rubin)

§ The algorithm will let us train the transition probabilities A= 
{aij} and the emission probabilities B={bi(ot)} of the HMM
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Starting out with Observable Markov 
Models

§ How to train?
§ Run the model on the observation sequence O.
§ Since it�s not hidden, we know which states we went 

through, hence which transitions and observations were 
used.

§ Given that information, training:
§ B = {bk(ot)}: Since every state can only generate one observation 

symbol, observation likelihoods B are all 1.0
§ A = {aij}:

 

aij =
C(i® j)
C(i® q)

qÎQå
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Extending Intuition to HMMs

§ For HMMs, cannot compute these counts 
directly from observed sequences

§ Baum-Welch (forward-backward) intuitions:
§ Iteratively estimate the counts 

• Start with an estimate for aij and bk, iteratively improve the 
estimates

§ Get estimated probabilities by:
• computing the forward probability for an observation
• dividing that probability mass among all the different paths 

that contributed to this forward probability
§ Two related probabilities: the forward probability and 

the backward probability
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Recall: The Forward Algorithm
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The inductive step, from Rabiner and 
Juang

§ Computation of at(j) by summing all previous values at-1(i) for all i

at-1(i) at(j)

Ot-1
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The Backward algorithm
§ We compute backward prob by induction:
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Inductive Step of the Backward Algorithm
(Figure after Rabiner and Juang)

§ Computation of bt(i) by weighted sum of all successive values bt+1
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Extending Intuition to HMMs

§ For HMMs, cannot compute these counts 
directly from observed sequences

§ Baum-Welch (forward-backward) intuitions:
§ Iteratively estimate the counts 

• Start with an estimate for aij and bk, iteratively improve the 
estimates

§ Get estimated probabilities by:
• computing the forward probability for an observation
• dividing that probability mass among all the different paths 

that contributed to this forward probability

§ Two related probabilities: the forward probability and 
the backward probability
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Intuition for Re-estimation of aij

§ We will estimate via this intuition:

§ Numerator intuition:
§ Assume we had some estimate of probability that a given 

transition iàj was taken at time t in observation sequence.
§ If we knew this probability for each time t, we could sum over all 
t to get expected value (count) for iàj.

i
jiaij  state from ns transitioofnumber  expected

 state  to state from ns transitioofnumber  expectedˆ =

ijâ
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Re-estimation of aij

§ Let gt be the probability of being in state i at time 
t and state j at time t+1, given O1..T and model F:

§ We can compute g from not-quite-g, which is:

 

g t (i, j) = P(qt = i,qt+1 = j |O,F)

)|,,(),(__ 1 F=== + OjqiqPjiquitenot tttg
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Computing not-quite-g

)( and ,, :)|,,( of componentsfour  The 1 tjijtt obaOjqiqP baF== +

tg
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From not-quite-g to g

)
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From g to aij
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Re-estimating the Observation 
Likelihood b

j
vvb k

kj  statein   timesofnumber  expected
 symbol observing and j statein   timesofnumber  expected

)(ˆ =
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Computing x

Computation of xj(t), the probability of being in state j
at time t.
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Reestimating the observation 
Likelihood b

§ For numerator, sum xj(t) for all t in which ot is 
symbol vk:

j
vvb k

kj  statein   timesofnumber  expected
 symbol observing and j statein   timesofnumber  expected

)(ˆ =
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Summary of A and B

The ratio between the 
expected number of 
transitions from state i to j
and the expected number of 

all transitions from state i

The ratio between the 
expected number of times 
the observation data emitted 
from state j is vk, and the 
expected number of times 
any observation is emitted 
from state j



20

The Forward-Backward Algorithm
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Summary: Forward-Backward 
Algorithm

1) Initialize F=(A,B,p)
2) Compute a, b, x
3) Estimate new F�=(A,B,p)
4) Replace F with F�
5) If not converged go to 2



Embedded Training of HMMs

§ The entire procedure:
1. Choose an estimate for a and b
2. Re-estimate a and b
3. Repeat until convergence
§ How do we get initial estimates for a and b?
§ For a we assume that from any state all the 

possible following states are equiprobable
§ For b we can use a small hand-labelled training 

corpus
22
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Summary

§ We learned the Baum-Welch algorithm for 
learning the A and B matrices of an individual 
HMM

§ It doesn�t require training data to be labeled at 
the state level; all you have to know is that an 
HMM covers a given sequence of observations, 
and you can learn the optimal A and B 
parameters for this data by an iterative process.
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The Learning Problem: Caveats

§ Network structure of HMM is always created by 
hand
§ no algorithm for double-induction of optimal structure 

and probabilities has been able to beat simple hand-
built structures.

§ Baum-Welch only guaranteed to find a local 
max, rather than global optimum


