
Recommended	Reading:	Ch.	12-14th

Jurafsky &	Martin	2nd edition

PI	Disclosure:	This	set	includes	adapted	material	from	Rada
Mihalcea,	Raymond	Mooney	and	Dan	Jurafsky

Parsing

2

Today

• Parsing with CFGs
• Bottom-up, top-down
• Ambiguity
• CKY parsing
• Early algorithm

3

Parsing with CFGs

• Parsing with CFGs refers to the task of assigning proper
trees to input strings

• Proper: a tree that covers all and only the elements of the
input and has an S at the top

• It doesn’t actually mean that the system can select the
correct tree from among all the possible trees

4

Parsing with CFGs
• As with everything of interest, parsing involves a

search
• We’ll start with some basic methods:

• Top down parsing
• Bottom up parsing

• Real algorithms:
• Cocke-Kasami-Younger (CKY)
• Earley parser

5

For Now
• Assume…

• You have all the words already in some buffer
• The input isn’t POS tagged
• We won’t worry about morphological analysis
• All the words are known

6

Top-Down Search

• Since we’re trying to find trees rooted with an S
(Sentences), why not start with the rules that give us an S.

• Then we can work our way down from there to the words.
• As an example let’s parse the sentence:

• Book that flight

Top Down Parsing
S

NP VP

Pronoun

7

Top Down Parsing
S

NP VP

Pronoun

book
X

8

Top Down Parsing
S

NP VP

ProperNoun

9

Top Down Parsing
S

NP VP

ProperNoun

book
X

10

Top Down Parsing
S

NP VP

Det Nominal

11

Top Down Parsing
S

NP VP

Det Nominal

book
X

12

Top Down Parsing
S

Aux NP VP

13

Top Down Parsing
S

Aux NP VP

book
X

14

Top Down Parsing
S

VP

15

Top Down Parsing
S

VP

Verb

16

Top Down Parsing
S

VP

Verb

book

17

Top Down Parsing
S

VP

Verb

book X
that

18

Top Down Parsing
S

VP

Verb NP

19

Top Down Parsing
S

VP

Verb NP

book

20

Top Down Parsing
S

VP

Verb NP

book Pronoun

21

Top Down Parsing
S

VP

Verb NP

book Pronoun

X
that

22

Top Down Parsing
S

VP

Verb NP

book ProperNoun

23

Top Down Parsing
S

VP

Verb NP

book ProperNoun

X
that

24

Top Down Parsing
S

VP

Verb NP

book Det Nominal

25

Top Down Parsing
S

VP

Verb NP

book Det Nominal

that

26

Top Down Parsing
S

VP

Verb NP

book Det Nominal

that Noun

27

Top Down Parsing
S

VP

Verb NP

book Det Nominal

that Noun

flight
28

29

Bottom-Up Parsing

• Of course, we also want trees that cover the input words.
So we might also start with trees that link up with the
words in the right way.

• Then work your way up from there to larger and larger
trees.

Bottom Up Parsing

30

book that flight

Bottom Up Parsing

31

book that flight

Noun

Bottom Up Parsing

32

book that flight

Noun

Nominal

Bottom Up Parsing

33

book that flight

Noun

Nominal Noun

Nominal

Bottom Up Parsing

34

book that flight

Noun

Nominal Noun

Nominal

X

Bottom Up Parsing

35

book that flight

Noun

Nominal PP

Nominal

Bottom Up Parsing

36

book that flight

Noun Det

Nominal PP

Nominal

Bottom Up Parsing

book that flight

Noun Det

NP

Nominal

Nominal PP

Nominal

37

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

38

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

39

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

Nominal PP

Nominal

40

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

S

VP

X

Nominal PP

Nominal

41

Bottom Up Parsing

book that

Noun Det

NP

Nominal

flight

Noun

Nominal PP

Nominal

X

42

Bottom Up Parsing

43

book that

Verb Det

NP

Nominal

flight

Noun

Bottom Up Parsing

44

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

45

book that

Verb

VP

S

NP

Nominal

flight

Noun

Det

Bottom Up Parsing

book that

Verb

VP

S

X NP

Nominal

flight

Noun

46

Bottom Up Parsing

47

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

book that

Verb

VP

VP

PP

Det

NP

Nominal

flight

Noun

X

48

Bottom Up Parsing

49

book that

Verb

VP

Det

NP

Nominal

flight

Noun

NP

Bottom Up Parsing

50

book that

Verb

VP

Det

NP

Nominal

flight

Noun

Bottom Up Parsing

51

book that

Verb

VP

Det

NP

Nominal

flight

Noun

S

52

Top-Down and Bottom-Up

• Top-down
• Only searches for trees that can be answers (i.e. S’s)
• But also suggests trees that are not consistent with any of the

words
• Bottom-up

• Only forms trees consistent with the words
• But suggests trees that make no sense globally

53

Control

• Of course, in both cases we left out how to keep track of
the search space and how to make choices
• Which node to try to expand next
• Which grammar rule to use to expand a node

• One approach is called backtracking
• Make a choice, if it works out then fine
• If not then back up and make a different choice

54

Problems
• Even with the best filtering, backtracking methods are

doomed because of ambiguity
• Attachment ambiguity
• Coordination ambiguity

55

Ambiguity

56

Dynamic Programming
• DP search methods fill tables with partial results and

thereby
• Avoid doing avoidable repeated work
• Efficiently store ambiguous structures with shared sub-parts.

• We’ll cover two approaches that roughly correspond to
top-down and bottom-up approaches:
• Cocke-Kasami-Younger (CKY)
• Earley parser

57

CKY Parsing
• First we’ll limit our grammar to epsilon-free, binary

rules (more later)

• Consider the rule A ® BC
• If there is an A somewhere in the input then there must be a

B followed by a C in the input.
• If the A spans from i to j in the input then there must be

some k s.t. i<k<j
• ie. the B splits from the C someplace

58

Problem
• What if your grammar isn’t binary?

• As in the case of the TreeBank grammar?
• Convert it to binary… any arbitrary CFG can be

rewritten into Chomsky-Normal Form automatically.
• What does this mean?

59

Problem

• More specifically, we want our rules to be of the form

A ® B C
Or

A ® w

That is, rules can expand to either 2 non-terminals or to a single
terminal.

60

Binarization Intuition
• Eliminate chains of unit productions.
• Introduce new intermediate non-terminals into the

grammar that distribute rules with length > 2 over
several rules.
• So… S ® A B C turns into
S ® X C and
X ® A B
Where X is a symbol that doesn't occur anywhere else

in the the grammar.

61

Sample L1 Grammar

62

CNF Conversion

• Consider the rule D → w
• Terminal (word) forms a constituent
• Trivial to apply

• Consider the rule A → B C
• If there is an A somewhere in the input then there must be a B

followed by a C in the input
• First, precisely define span [i, j]
• If A spans from i to j in the input then there must be some k such

that i<k<j
• Easy to apply: we just need to try out different values for k

CKY Parsing: Intuition

j

63

CKY Parsing: Table

• Any constituent can conceivably span [i, j] for all 0≤i<j≤N,
where N = length of input string
• We need an N × N table to keep track of all spans…
• But we only need half of the table

• Semantics of table: cell [i, j] contains A iff A spans i to j in
the input string
• Of course, must be allowed by the grammar!

64

CKY Parsing: Table-Filling

• So let’s fill this table…
• And look at the cell [0, N]: which means?

• But how?

65

CKY Parsing: Table-Filling

• In order for A to span [i, j]:
• A ® B C is a rule in the grammar, and
• There must be a B in [i, k] and a C in [k, j] for some i<k<j

• Operationally:
• To apply rule A ® B C, look for a B in [i, k] and a C in [k, j]
• In the table: look left in the row and down in the column

66

67

CKY Algorithm

68

Note

• We arranged the loops to fill the table a column at a time,
from left to right, bottom to top.
• This assures us that whenever we’re filling a cell, the parts needed

to fill it are already in the table (to the left and below)
• It’s somewhat natural in that it processes the input left to right a

word at a time
• Known as online

69

Example

CKY Parser Example

70

71

CKY Notes
• Since it’s bottom up, CKY populates the table with a lot

of phantom constituents.
• To avoid this we can switch to a top-down control strategy
• Or we can add some kind of filtering that blocks constituents

where they can not happen in a final analysis.
• Is there a parsing algorithm for arbitrary CFGs that combines

dynamic programming and top-down control?

72

Earley Parsing
§ Allows	arbitrary	CFGs
§ Top-down	control
§ Fills	a	table	in	a	single	sweep	over	the	input

§ Table	is	length	N+1;	N	is	number	of	words
§ Table	entries	represent	a	set	of	states	(si):

§ A	grammar	rule
§ Information	about	progress	made	in	completing	the	sub-tree	
represented	by	the	rule

§ Span	of	the	sub-tree

73

States/Locations
• S ® ● VP, [0,0]

• NP ® Det ● Nominal, [1,2]

• VP ® V NP ● , [0,3]

• A VP is predicted at the start
of the sentence

• An NP is in progress; the Det
goes from 1 to 2

• A VP has been found starting
at 0 and ending at 3

74

Earley

• As with most dynamic programming approaches, the
answer is found by looking in the table in the right place.

• In this case, there should be an S state in the final column
that spans from 0 to N and is complete. That is,

• S ® α ● [0,N]

• If that’s the case you’re done.

75

Earley

• So sweep through the table from 0 to N…
• New predicted states are created by starting top-down from S
• New incomplete states are created by advancing existing states as

new constituents are discovered
• New complete states are created in the same way.

76

Earley

• More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Generate new predictions
3. Go to step 2

3. When you’re out of words, look at the chart to see if you have a
winner

77

Earley
• Proceeds incrementally, left-to-right

• Before it reads word 5, it has already built all hypotheses that are
consistent with first 4 words

• Reads word 5 & attaches it to immediately preceding hypotheses.
Might yield new constituents that are then attached to hypotheses
immediately preceding them …

• E.g., attaching D to A ® B C . D E gives A ® B C D . E
• Attaching E to that gives A ® B C D E .
• Now we have a complete A that we can attach to hypotheses

immediately preceding the A, etc.

78

Earley
• Three Main Operators:

• Predictor: If state si has a non terminal to the right we add to si all
alternatives to generate the non terminal

• Scanner: when there is POS to the right of the dot in si then
scanner will try to match it with an input word and if a successful
match is found the new state will be added to si

• Completer: if the dot is at the end of the production then the
completer looks for all states looking for the non terminal that has
been found and advances the position of the dot for those states.

79

Core Earley Code

Earley Code

80

81

Example
• Book that flight
• We should find… an S from 0 to 3 that is a completed

state…

82

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

0Book 1 the 2 flight 3

83

Chart[1]

84

Charts[2] and [3]

85

Efficiency
• For such a simple example, there seems to be a lot of

useless stuff in there.
• Why?

• It’s predicting things that aren’t consistent
with the input
•That’s the flipside to the CKY problem.

86

Details

• As with CKY that isn’t a parser until we add the
backpointers so that each state knows where it came from.

87

Back to Ambiguity

• Did we solve it?

88

Ambiguity

• No…
• Both CKY and Earley will result in multiple S structures for the [0,N]

table entry.
• They both efficiently store the sub-parts that are shared between

multiple parses.
• And they obviously avoid re-deriving those sub-parts.
• But neither can tell us which one is right.

89

Ambiguity

• In most cases, humans don’t notice incidental
ambiguity (lexical or syntactic). It is resolved on the fly
and never noticed.

• We’ll try to model that with probabilities.

